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Antiferromagnetic correlation of the heavy-fermion system by 
the Gutzwiller approach 

Zou Liang-Jian 
Institute of Solid State Physics. Academia Sinira.PO Box 1129. Hefei 230031, People’s 
Republic of China 
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Abstract. In h i s  p p r .  an antiferromagnetic mrrelation term beyond the RKKY interaction is 
derived f m  the Anderson model by the Gumwiller projection technique. The campetition 
between Ule Kondo cwpling and antiferromagnetic correlation in heavy-fermion sysfems i s  
discussed. ?he propagators, sped- and dynamic spin susceptibili~ show that magnetic 
instability may ocwr at low frequencies. 

The highly unusual behaviours of heavy-fermion systems (HFSs), from the Fermi Quid (E) 
state through antiferromagnetic ( A m )  ordering to superconductive ordering, have stimulated 
various attempts to derive these properties on the basis of microscopic theory [I]. In the 
development of our understanding of the physics of HFSs, two kinds of model Hamiltonian 
play instrumental roles: one is the Kondo lattice (or impurity) model: the other is the periodic 
(or impurity) Anderson model. For the impurity case, Schrieffer and co-workers [2,31 
proved that the Anderson model is equivalent to the Kondo model by a unity transformation. 
Various exact and approximate solutions to impurity models have been developed [4-6]; 
the theoretical results agree very well with the experimental data on dilute alloys. 

However, many efforts need to be made for the lattice case (HFS) . Because of the lattice 
characteristic, HFSS cannot be regarded as arrays of a single Kondo resonance state [71. 
The delocalization and coherence off electrons in HFSs will heavily affect the properties of 
systems. Our previous work [8] shows that, after the unity transformation [3] to the periodic 
Anderson model, the effective Hamiltonian includes both the Kondo lattice interaction and 
a delocalized f-electron term, which not only renormalizes the f level but also foms a 
narrow f band: this delocalized term could explain the unusual magnetic properties in the 
low-temperature range of HFSS 181. 

The msition of an HFS from an FI., state to an A m  ground state has always been 
of interest [9-11]. To explore the coexistence of E and AFM states, the Ruderman- 
KitEl-Kasuya-Yosida (RKKY) interaction between f electrons is added to the Kondo lattice 
Hamiltonian LIZ]. This method is not self-consistent because the RKKY interaction can be 
regarded as the second-order approximation of the Kondo or Anderson model [13]. AU 
the Coulomb and exchange s-s, s-f, and f-f electron interactions are also considered in 
order to discuss the breakdown of the Kondo effect [14]; it shows that a sufficiently strong 
ferromagnetic exchange interaction between f electrons may change the sign of the exponent 
of the Kondo temperature and destroy the Kondo single state; nevertheless, it cannot explain 
why most magnetically ordered HFSS have an AFM nature. 

When one assumes the Coulomb repulsion to be infinite in the Anderson model, it 
seems that some physics related to the Coulomb interaction is lost. For such a strongly 
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correlated system, the GutzwiUer [15] projection approach can be used to project the double 
occupancy off electrons. The approach may be more suitable for real WFSs than is the slave- 
boson method in which the on-site Coulomb repulsion U between f electrons is assumed to 
approach infinity. The Gutzwiller variational technique has been used for the one-electron 
hybridization wavefunction of the periodic Anderson model to remove the double occupancy 
in the same state by Rice and Ueda 1161; they found that it results in the renormalization 
of the hybridization matrix element V by a factor. The Gunwiller approach has also been 
applied to the Kondo lattice Hamiltonian by Shiba and Faze& [171; it shows that the local 
f electrons participate in forming the large Fermi surface. 

In this paper, we prove that an AFM correlation and Kondo coupling may coexist by 
the Gutzwiller projection approach in the periodic Anderson Hamiltonian, we evaluate the 
ground-state energy variationally and we examine the propagator, self-energy and dynamic 
spin susceptibility from the derived effective Hamiltonian. 

We 6rst review some previous results briefly. Our starting point is the periodic Anderson 
Hamiltonian 

where the conduction band dispersion Ek and f energy level EO are measured from the 
chemical potential p. The hybridization maaix element vk; = [Vexp(-ikR,)]/& the 
on-site Coulomb interaction U between f elecmns is large (but Enite) compared with E t ,  
EO and V. The orbital degeneracy of electrons is neglected for simplicity. 

A unity transformation [3] applied to the Anderson model (1) leads to the effective 
Hamiltonian (to the order of V2) 

with 

Here the 6rst two terms are just the Kondo lattice Hamiltonian, an extension of the result 
of Coqblin and Schrieffer [Z] to the lattice case, which describes the FL and heavy-electron 
characteristics of an HFS. The last term corresponds to a transfer process of f electrons; the 
coefficient (;) or r;) is obviously the transfer mauix element of an f elecmn hopping from 
site j to site i when site i is empty or occupied by a spin-flipped electron; the charge-"fer 
process may be m e d  back to the lanice characteristics of an HFS. So Hamiltonian (2) is 
a two-band Kondo model and the HFS could be described as a two-weak-coupling fluid, as 
Coleman and co-workers [9] suggested. 

One should keep in mind that the hopping process is indirect, or via the conduction 
band. The formation of a narrow f band implies another contribution 10 the effective 
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mass of the heavy elecmn. It can be seen that, if the Coulomb interaction is far larger 
than the conduction band width D and the f energy level the value of the matria 
element r(') is less than r ( ' ) .  If conditions U -+ 03 and nib + I. are satisfied, the hansfcr 
term in equation (2) tends to zero; the slave-boson method is then needed. The last three 
terms resemble a single-band Hubbard Hamiltonian; this similarity is very interesting. The 
effective Hamiltonian including the Kondo part and the Hubbard part may give a clue as to 
the coexistence or competition of n state and antiferromagnetism in the same heavy-electron 
system. 

The heavy-fermion compounds are strongly correlated systems, which are similar to the 
high-T, superconductive materials. This motivates us to apply the Gutzwiller projector to 
the Hamiltonian (2). The projectors 

PI = H(I - n i l n i r )  

(4) 
P* = 1 - P, = 1 - n ( 1  - ni tn j r )  

are the GutzwiUer projectors onto the states with no double occupancy and with double 
occupancy of the f-electron configuration, respectively. Then a unity transformation leads 
to the resulting effective Hamiltonian 

H' = ~ 6 k c ~ o c k o  + J ~ X ,  exp[-i(k - k')Ri] si . ~ & ~ , c & c ~ , ~ ~  + ~ohifi ,  
l o  kk'i i# 

+ C(rC)f,:fi. + HC) + C A ~ ~ S ~  . S, (5) 
i j m  i j  

with 

Ai j  = 2( t j j )  + tj?)2/U 

where the high-energy band off electrons (double occupancy) is neglected in the low-energy 
range. For simplicity, JXX. is assumed to be approximately a positive constant J near the 
Fermi surface, and Ai,, which is only the nearest-neighbour interaction A, is not zero. 
Therefore the last three terms of the Hamiltonian (5) display an A m  correlation between f 
elecmns which has been extensively studied for high-T, superconductors [IS, 191. 

As shown in equation (5). with the delocalization and coherence of f eleclrons arising 
from the charge-transfer term and the strong correlation from the Coulomb repulsion between 
f electrons, the nearest-neighbour spins of magnetic f electrons tend to a n t i p a e l  alignment 
to decrease the ground-state energy. So, at low energies, the effective interaction will 
develop into an AFM term rather than the oscillatory RKKY interaction at high energies. 
With equation (9, one could understand why most magnetically ordered m s  behave as 
AFM rather than ferromagnetic. 

Although the spin of f electrons has a tendency to antiparallel alignment, the spin- 
compensated Kondo coupling between s and f elecmns will weaken it. Therefore the 
effective Hamiltonian (5) exhibits explicitly competition and coexistence of Kondo coupling 
and the AFM correlation. One would expect ~ t u r a l l y  that many properties of HFSS consist 
of contributions from both the FL component and the AFM component. 

With the effective Hamiltonian (3, we consider a paramagnetic state. A many-body 
variational wavefunction for the HFS is constructed as follows: 

(6) I@) = C z x e x p ( - i k R i  -ik'Rj) r k k ' C : , C ~ ~ , I F S ) l ~ i ~ ~ )  
(ij) kY 00' 
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where IFS)  represents the Fermi spherical ground state of the conduction electron, IZiZi) the 
spin wavefunction off  electrons with spin Z on site i and spin 5' on site j (the resmction 
i # j excludes the doubly occupied state on the same site). The invariance of I$) in 
commutating index k and k' requires that 

r M l  = - r x f k  and hence rkk = 0. (7) 

The variational to the ground-state energy of the HFS leads to the bound energy of a Kondo 
single state: 

Eb = A - D exp[-iJN(O)] (8) 

where D is the conduction band width and N ( 0 )  the density of states on the Fermi surface. 
According to equation (a), the AFM correlation will lit the energy of the Kondo state and, 
if it is strong enough (i.e. if the parameter A is large), the bound energy Eb becomes zero 
or positive; the Kondo single state is thus destroyed. 

A phase diagram is calculated in terms of the parameter A I D  and J N ( O ) ,  as shown in 
figure 1. It shows that a small AFM correlation could suppress the formation of a Kondo 
single state; the R character in the HFS emerges only when the Kondo coupling between 
the conduction and f electrons is sufficiently large. 

0.02 i 1 Kondo regime 

. .  
Figure 1. A phase diagram when the Kondo cwpling and the APM colselatim coexist. 

Next we consider the dynamic spin susceptibility of the m. The susceptibility is the 
dynamic response function of spin: 

where G(o, q)  = ( (S- (q ) ;  S+(-4))) is the propagator of spin components. For an HFS 
with an AFM correlation, the susceptibility matrix has nine components xcc. xaC. ,ybc etc; here 
the subscripts c, a and b represent the conduction band electrons, the spin-up f electrons 
and the spin-down f electrons in the sublattice, respectively. 
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Figure 2. The dependence of he self-energy &(o,q) of conduction e l m "  on frequency o 
for he precise screening Is,l = S and underscreening S > Is,[ EIISOI. The energy scale i s  the 
parameter A = 1. 

The propagator of conduction band electrons is especially interesting and is easily 
calculated to the leading-order approximation: 

GAo. q)  = Gk{ 1 + A J Z S Z [ l  - y(q)l/det(o, q ) G k }  (10) 

where GZc is the propagator of a non-interacting electron gas (n) and det(o, q)  an 
abbreviation of the expression 

det(0.q) = (o+ JS,)' -(oq)' - AJ2SZ[1  -y (q) lG;  

with y ( q )  = ( l / z )  Csexp(-i6k); 6 denotes the nearest-neighbour position vector, z the 
number of the nearest neighbours and oq = ASJ-, the AFM spin-wave spectrum. 
s, and S represent the spin statistical average values of s and f electrons, respectively. 

Accordingly, to the leading-order approximation,the self-energy of conduction electrons 
in systems with an AFM internal field is 

Cdo. q )  = AJ2SZ[I - v(q)l/det(o, 4). (11) 

Tlre relation of the self-energy to the frequency o is shown in figure 2. The evaluation is 
performed for the exact screening case S = lscl (the case of a precise balance between the 
f spin and the s spin), and for the underscreening case S z Iscl. It seems that there is no 
discontinuity in the self-energy in the low-energy range. 

Since the self-energy is related to the energy shift of conduction electrons, the smooth 
variation in self-energy with frequency shows that, when the Am correlation is switched on 
in an HFS, the transition of the HFS from the FL to the AFM ordering state may be smooth. 

The dynamic susceptibility of conduction electrons gives 

x&,d  = x&.q)[ l+  { A J 2 S 2 D  - v(q)l/det(o+itl,q)}~,o,(o,q)] (12) 
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where the spin susceptibility in the FL state without the A F M  correlation is denoted ,yk, 
which is given by the Lindhard-type functions when w = 0. A similar result was obtained 
by Doniach [IO], in which the magnetic instability is discussed in the periodic Anderson 
model by the slave-boson method, provided that xi = AS2[1 - y(q)l/det(w + iq,9). 
Similarly, the cross susceptibilities xac and xbc could be calculated readily. 

From equation (12), the response of conduction elecwons consists of two parts: one is 
the connibution &') from the E, which gives the RKKY coupling in the low-temperature 
range; the other is the coneibution from the coupling between the FL and AFM correlation. 

The dynamic spin susceptibility X&J, 9) of conduction electrons is shown in figure 3. 
It exhibits an oscillation at low frequencies and approaches the FL susceptibility at high 
frequencies. This indicates that the interaction behveen the FL component and the AFM 
correlation is strong in the low-energy range, while it becomes asymptotically free in the 
high-energy range. 

1.50 , 

-1.50 
0. 2.00 +.e E.& a.w m.bo I :  

'Frequency 
0 

Figure 3. The dependence of rhe reduced dynamic spin susceptibility x d x z  cm frequency o 
for I = 5 and Is,l = S. The energy scale is A = 1. 

The susceptibility describes the dynamical response of the HFS under a varying magnetic 
field, and its imaginary part relates to the correlation function of spin through the Ructuation- 
dissipation theorem. In the static state (i.e. w +. 0. q + 0). the divergence of the 
susceptibility implies the long-range correlation of spin and the formation of magnetic 
order. The AFM interaction in equation (5) will excite local or intersite spin fluctuations, as 
shown in neutron scattering experiments. 

The low-frequency oscillation of the dynamical susceptibility x implies magnetic 
instability; it predicts that, under a small AFM interaction, the HFS deviates from the normal 
FL state [201 and drives the system to an Am4 ordered state at a certain temperature T .  
Further investigation is carrying on. 

Magnetic instability occurs when the denominator det (w + ir). q )  vanishes: 
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Figure 4. The energy spectrum of the magnetic instability o(q) as a funaim al wavevector q 
for I = I and lscl = S. n e  energy scale is the parameter A = 1: the crystal constant a = I. 

The solution to equation (13) for the long-wavelength approxjmation is shown in figure 4. 

spin fluctuation y ( k )  is the response of interaction between conduction electrons and AFM 
spin fluctuation. 

We noticed that, physically, the projection of the GutzwiUer operator onto the ground- 
state wavefunction as Rice and Ueda did in [161 should be equivalent to projection onto 
equation (1). However, for the laner, one can explore the details of interaction occurring 
in the HFS. Our results would be consistent with the work of Shiba and Fazekas [I71 if 
the charge-transfer term tjj or the AFM correhtim Aij term disappear and the ground-state 
wavefunction is conshucted as their singlet wavefunction. 

As pointed out in [17,211, since some virtual processes, such as the charge-transfer 
process here, are taken into account through the canonical transformation in the strong- 
coupling limit, the variation in the effective Hamiltonian (5) is superior to a similar variation 
in the original Hamiltonian (1). 

Here an experimental fact has been noticed for some heavy-elecmn systems [121: the 
critical temperatwe C of the superconductive transition is about a tenth of the AFM N&l 
teInp~Iahlre TN, or C, KIT,. This implies that the relation between the AF'M correlation 
and superconductive ordering is direct. Is it a scaling behaviour in some HFSS? ?hi 
universal character is very interesting. 

Finally we summarize our results. On the basis of the modified periodic Anderson 
model, we derived an effective Hamiltonian describing the coexistence of Kondo coupling 
and AFM correlation. The variational calculation shows that the AFM correlation wi l l  
lift the bound energy of a single state. The dynamic spin susceptibility may exhibit 
magnetic instability resulting from the competition between the Kondo coupling and the 
AFM correlation. 

There exist three branches Of the Spectra The branches col ( k )  and q ( k )  c m p o n d  U) AFM 
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